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Abstract

A second-order accurate kinetic scheme for the numerical solution of the relativistic Euler equations is presented.

These equations describe the flow of a perfect fluid in terms of the particle density n, the spatial part of the four-velocity
u and the pressure p. The kinetic scheme, is based on the well-known fact that the relativistic Euler equations are the

moments of the relativistic Boltzmann equation of the kinetic theory of gases when the distribution function is a rel-

ativistic Maxwellian. The kinetic scheme consists of two phases, the convection phase (free-flight) and collision phase.

The velocity distribution function at the end of the free-flight is the solution of the collisionless transport equation. The

collision phase instantaneously relaxes the distribution to the local Maxwellian distribution. The fluid dynamic vari-

ables of density, velocity, and internal energy are obtained as moments of the velocity distribution function at the end of

the free-flight phase. The scheme presented here is an explicit method and unconditionally stable. The conservation laws

of mass, momentum and energy as well as the entropy inequality are everywhere exactly satisfied by the solution of the

kinetic scheme. The scheme also satisfies positivity and L1-stability. The scheme can be easily made into a total variation

diminishing method for the distribution function through a suitable choice of the interpolation strategy. In the nu-

merical case studies the results obtained from the first- and second-order kinetic schemes are compared with the first-

and second-order upwind and central schemes. We also calculate the experimental order of convergence and numerical

L1-stability of the scheme for smooth initial data.

� 2003 Elsevier B.V. All rights reserved.

AMS: 65M99; 76Y05

Keywords: Relativistic Euler equations; Kinetic schemes; Second-order accuracy; Conservation laws; Hyperbolic systems; Entropy

conditions; Positivity; L1-stability; Discontinuous solutions
qThis work is supported by the project ‘‘Adaptive error analysis for non-stationary hyperbolic systems in reactive and multi-phase

flow’’, contract # DFG WA 633/10-3.
*Corresponding author. Tel.: +49-391-6712877; fax: +49-391-6718073.

E-mail addresses: matthias.kunik@mathematik.uni-magdeburg.de (M. Kunik), shamsul.qamar@mathematik.uni-magdeburg.de

(S. Qamar), gerald.warnecke@mathematik.uni-magdeburg.de (G. Warnecke).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.07.019

mail to: matthias.kunik@mathematik.uni-magdeburg.de


696 M. Kunik et al. / Journal of Computational Physics 192 (2003) 695–726
1. Introduction

In modeling flow at speeds where relativistic effects become important, space and time are intrinsically
coupled and the Euler equations of gas dynamics become more complicated. However, it is still possible to

write the relativistic Euler equations as a first-order hyperbolic system that can be advanced forward in time

in some fixed reference frame. We call the reference frame a laboratory frame since this is typically the

frame from which we are observing. Relativistic gas dynamics plays an important role in areas of astro-

physics, high energy particle beams, high energy nuclear collisions, and free-electron laser technology.

There are two approaches to solve the Euler equations numerically. One is based on the Euler equations,

for example Godunov-type schemes and central schemes. While the other approach is based on the

transport equations, for example kinetic schemes. In the kinetic schemes the moments of the Maxwellian
phase density are used in order to derive the constitutive relations. Using the conservation laws these

constitutive relations lead to the Euler equations. This distinction in the solution approaches was first made

by Harten et al. [19]. No matter how a numerical scheme for the Euler equations is derived we expect it to

have certain properties apart from being consistent with the equations. Due to the presence of disconti-

nuities and weak solutions convergence is very difficult to prove. Some convergence results are available for

scalar hyperbolic equations and for special 2� 2 systems, however, no such result exist for the Euler

equations. Other properties are needed to ascertain good quality of the numerical solution: the numerical

scheme should be robust in handling discontinuities, and it should show no grid dependencies in multi-
dimensions. In addition, it should retain properties specific to the Euler equations: conservation of mass,

momentum, and energy, positivity of density and pressure, and entropy inequalities. We will show in this

study that kinetic schemes preserve all these properties.

Kinetic approaches in order to solve the non-relativistic Euler equations of gas dynamics were suc-

cessfully applied to several initial and boundary value problems, see for example [7–10,32,35–37]. Some

interesting links between the Euler system and the so-called kinetic BGK-model, which was introduced by

Bhatnagar et al. [1], are discussed in the textbooks by Cercignani [3], Cercignani et al. [4] as well as by

Godlewski and Raviart [15].
Kunik et al. have used the kinetic schemes in order to solve the relativisic Euler equations, see [24,25].

These kinetic schemes are discrete in time but continuous in space. Also, these schemes are unconditionally

stable as they do not require any CFL condition. We have also used first and second-order BGK-type

kinetic flux vector splitting (KFVS) schemes in order to solve the one- and two-dimensional ultra-rela-

tivistic Euler equations, see [26]. Further, we have applied the basic idea of these works to the evolution of

temperature and heat flux in a Bose gas of phonons, see [27].

A characteristic feature of kinetic theory is that its models are statistical and the particle systems are

described by distribution functions f ¼ f ðt; x; qÞ, which represent the density of particles and momenta with
given space–time position ðt; xÞ 2 R� R3 and momentum q 2 R3. A distribution function contains a wealth

of information, and macroscopical quantities are easily calculated from this function. These macroscopic

quantities do not depend on the momentum q but only on the space–time point ðt; xÞ. In kinetic theory the

time evolution of the system is determined by the interactions between the particles which depend on the

physical situation. For instance, the driving mechanism for the time evolution of a neutral gas is the collision

between particles, the relativistic Boltzmann equation. For a plasma the interaction is through the electric

charges, the Vlasov–Maxwell system, and in the stellar and cosmological cases the interaction is gravita-

tional, the Einstein–Vlasov system. Of course, combinations of interaction processes are also considered but
in many situations one of them is strongly dominating and the weaker processes are neglected.

A few years after Einstein�s famous paper ‘‘Zur Elektrodynamik bewegter K€oorper’’, J€uuttner [21] ex-

tended the kinetic theory of gases which was developed by D. Bernoulli, Clausius, Maxwell and Boltzmann,

to the domain of relativity. He succeeded in deriving the relativistic generalization of the Maxwellian

equilibrium phase density. Later on this phase density and the whole relativistic kinetic theory was
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structured in a well organized Lorentz-invariant form, see [5,6,20], and the textbook of deGroot et al. [17].

J€uuttner [22] also established the relativistic form of equilibrium phase densities and the corresponding

equations of state for the systems of bosons and fermions. In the textbook of Weinberg [34] one can find a
short introduction to special relativity and relativistic hydrodynamics with further literature also for the

imperfect fluid (gas), see for example the papers of Eckart [12–14]. A good introduction about the recent

methods applied to relativistic gas dynamics can be found in the review article of Mart�ıı and M€uuller [23]. It is
noted that, except the kinetic beam scheme of Yang et al. [38], all other methods developed for the rela-

tivistic Euler equations are based on macroscopic continuum description.

In this paper we extend our first-order kinetic scheme (continuous in space) to second order for the one-

dimensional ultra-relativistic Euler equations, see [24]. Deshpande [8] has used a similar approach in order to

get second-order accuracy of the kinetic scheme for the non-relativistic Euler equations. Similar to the non-
relativistic case [8], a fascinating aspect of the present work is the use of antidiffusive Chapmann–Enskog

theory in the development of the second-order accurate kinetic scheme. Normally the Chapmann–Enskog

theory is associated with the Navier–Stokes equations. We show that to cancel the large amount of viscosity

in the first-order kinetic scheme, antidiffusive terms are required, and these can be introduced through the

Chapmann–Enskog-type relativistic phase density. We also extend the kinetic scheme to account for the

boundary conditions. The application of the boundary conditions are different from other finite-difference

methods. The boundary conditions are at the level of the velocity distribution function, which is natural in the

kinetic scheme. This second-order kinetic scheme is applied to several one-dimensional problems, and the
results demonstrate the capability of the method for giving �wiggle-free� accurate solutions.

Now we give a short overview of this article:

In Section 2 we will present the basic definitions of the relativistic kinetic theory, namely the macroscopic

quantities considered in thermodynamics which are obtained from a kinetic phase density. Moreover the

relativistic Maxwellian in the ultra-relativistic case is introduced, see [24].

In Section 3 we calculate the macroscopic moments of the relativistic Maxwellian in order to formulate

the ultra-relativistic Euler equations as conservation laws for the particle number, momentum, and energy.

The Euler equations are written in differential form as well as in a weak integral form. An entropy
inequality is given in weak integral form with an entropy function which satisfies the Gibbs equation.

In Section 4 we first formulate the first-order kinetic scheme in order to solve the three-dimensional

ultra-relativistic Euler equations, see [24]. The conservation laws and the entropy inequality for the scheme

were proved in [24]. Here we also prove the positivity and L1-stability of the kinetic scheme. In contrast to

the classical three-dimensional Euler equations for a non-relativistic gas we will show that the threefold

momentum integrals for the particle-density four-vector and for the energy–momentum tensor reduce

simply to surface integrals where the integration is performed with respect to the unit sphere. A similar idea

was used by [11,27] in order to solve the hyperbolic moment systems for a phonon Bose-gas, resulting from
the Boltzmann–Peierls equation and maximum entropy principle.

In Section 5 we are looking at the special case of spatially one-dimensional solutions which are never-

theless solutions to the three-dimensional ultra-relativistic Euler equations. In this case the surface integrals

of the three-dimensional kinetic scheme reduce again to single integrals which range from )1 to +1. They

indicate the finite domain of dependence on the preceding initial data, which is covered by the backward

light-cones, see [24]. This property does not hold for classical kinetic schemes. We explain the numerical

implementation of the scheme. We also explain how to extend the scheme to initial and boundary value

problems. In order to calculate the free-flight phase density we use an interpolation polynomial for which
total variation diminishing (TVD) property was proved by Deshpande [8] in the non-relativistic case. The

proof of the TVD property in the relativistic case is exactly the same with minor modifications, therefore we

omit the proof in this paper.

In Section 6 we extend the one-dimensional first-order kinetic scheme to second order by using the

approach of Deshpande [8]. We use two approaches in order to get second-order accuracy in time. Both
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approaches lead to the same results. To get second-order accuracy we use second order in space interpo-

lation polynomial for the calculation of the free-flight phase density. This interpolation polynomial also

satisfies the TVD property, see [8].
In Section 7 we report computations for numerical test cases. We compare the kinetic scheme results

with that of Godunov [16] and central schemes of Nessayahu and Tadmor [28]. The CFL condition for

central and upwind schemes in the ultra-relativistic case is very simple which is Dt ¼ Dx=2. This CFL

condition comes out automatically due to the structure of light cones, since every signal speed is bounded

by the velocity of light. We also check the experimental order of convergence (EOC) and numerical L1-error

for the first and second-order kinetic schemes by using smooth initial data.
2. The relativistic kinetic theory

In this section we describe a relativistic gas consisting of many microscopic structureless particles in

terms of the relativistic kinetic phase density. From this fundamental phase density we calculate tensorial

moments which give the local macroscopic physical quantities of the gas such as the particle density, the

velocity, the pressure, the temperature and so on.

In order to formulate the theory in a Lorentz-invariant form, we make use of the notations for the tensor

calculus used in the textbook of Weinberg [34], with only slight modifications:
(A) The space–time coordinates are xl; l ¼ 0; 1; 2; 3; with x0 :¼ ct for the time, x1; x2; x3 for the position.

(B) The metric-tensor is

glm ¼ glm ¼
þ1; l ¼ m ¼ 0;
�1; l ¼ m ¼ 1; 2; 3;
0; l 6¼ m:

8<
: ð2:1Þ

(C) The proper Lorentz-transformations are linear transformations Ka
b from one system of space–time with

coordinates xa to another system x0a. They must satisfy

x0a ¼ Ka
bx

b; glm ¼ Ka
lK

b
mgab; K0

0 P 1; detK ¼ þ1: ð2:2Þ

The conditions K0
0 P 1 and detK ¼ þ1 are necessary in order to exclude inversion in time and space.

Then the following quantity forms a tensor with respect to proper Lorentz-transformations, the so-

called Levi-Civita tensor:

�abcd ¼
þ1; abcd even permutation of 0123;
�1; abcd odd permutation of 0123;
0; otherwise:

8<
:

Note that in the textbook of Weinberg [34] this tensor as well as the metric tensor both take the sign

opposite to the notation used here.

(D) Einstein’s summation convention. Any Greek index like a; b that appears twice, once as a subscript and

once as a superscript, is understood to be summed over 0; 1; 2; 3 if not noted otherwise. For spatial

indices, which are denoted by Latin indices like i; j; k, we will not apply this summation convention.

Now we take a microscopic look at the gas and start with the kinematics of a representative gas atom

with particle trajectory x ¼ xðtÞ, where the time coordinate t and the space coordinate x are related to an
arbitrary Lorentz-frame. The invariant mass of all structureless particles is assumed to be the same and is

denoted by m0. The microscopic velocity of the gas atom is dxðtÞ=dt, and its microscopic velocity four-

vector is given by cql, where the dimensionless microscopic velocity four-vector ql is defined by
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ðq0; qÞT; q0 ¼ q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
; q ¼

1
c
dx
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
c
dx
dt

� �2q : ð2:3Þ

Note that in the ultra relativistic case q0 ¼ jqj, see [24,25] for further details.

The relativistic phase density f ðt; x; qÞP 0 is the basic quantity of the kinetic theory. This function may

be interpreted as giving the average number of particles with certain momentum at each time–space point.

In the following we make use of the fact that the so-called volume element d3q=q0 is invariant with respect to

Lorentz-transformations.
Now we give the following definitions for the macroscopic moments and entropy four-vector and the

definition of the macroscopic basic fields which we need for the formulation of the ultra-relativistic Euler

equations, for more details see [24,25].

(i) Particle-density four-vector:

Nl ¼ Nlðt; xÞ ¼
Z
R3

qlf ðt; x; qÞ d
3q
q0

: ð2:4Þ

(ii) Energy–momentum tensor:

T lm ¼ T lmðt; xÞ ¼ m0c2
Z
R3

qlqmf ðt; x; qÞ d
3q
q0

ð2:5Þ

with l; m ¼ 0; 1; 2; 3, i.e. these are total 16 quanties.
(iii) Entropy four-vector:

Sl ¼ Slðt; xÞ ¼ �kB

Z
R3

qlf ðt; x; qÞ ln f ðt; x; qÞ
v

� �
d3q
q0

: ð2:6Þ

Here kB ¼ 1:38062 � 10�23 J=K is Boltzmann�s constant and v ¼ ðm0c
�h Þ

3
with Planck�s constant �h ¼ 1:05459�

10�34 J s. Note that v has the same dimension as f , namely 1/volume.

Tensor algebraic combinations of these moments:

(i) The particle density

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
N lNl

p
; ð2:7Þ

(ii) the dimensionless velocity four-vector

ul ¼ 1

n
Nl; ð2:8Þ

(iii) the pressure and temperature

p ¼ 1

3
ðulum � glmÞT lm ¼ kBnT : ð2:9Þ

Remark. The macroscopic velocity v of the gas can be obtained easily from the spatial part u ¼ ðu1; u2; u3ÞT
of the dimensionless velocity four-vector by

v ¼ c
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p : ð2:10Þ
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From this formula we can immediately read off that jvj < c, i.e. the absolute value of the velocity is bounded
by the speed of light. Note also that u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
is the Lorentz factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. These definitions are

valid for any relativistic phase-density f ¼ f ðt; x; qÞ.

The most interesting aspect of the kinetic schemes is that instead of dealing with a system of nonlinear

hyperbolic partial differential equations (for example relativistic Euler equations), we consider the colli-

sionless transport equation of the kinetic theory of gases for developing upwind schemes. This relativistic

linear transport equation without collision term

1

c
of
ot

þ
X3
k¼1

qk

q0
of
oxk

¼ 0 ð2:11Þ

is a linear transport equation for the scalar f . This equation gives the following conservation laws for the

particle number, momentum and energy in differential form

oNl

oxl
¼ 0;

oT lm

oxl
¼ 0; l; m ¼ 0; 1; 2; 3: ð2:12Þ

J€uuttner extended the classical velocity distribution of Maxwell for a gas in equilibrium to the relativistic

case. The resulting J€uuttner distribution fJðn; T ; u; qÞ depends on five constant parameters, which describe the
state of the gas in equilibrium, namely the particle density n, the absolute temperature T and the spatial part

u 2 R3 of the dimensionless four-velocity, see [24,25]. The J€uuttner phase density in the ultra-relativistic limit

[24] is given by

f �
J ðn; T ; u; qÞ ¼

n
8pT 3

exp

�
� ulql

T

�
¼ n

8pT 3
exp

�
� jqj

T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p�
� u � q

jqj

��
; ð2:13Þ

where in the ultra-relativistic limit

q0 ¼ q0 ¼ jqj: ð2:14Þ

From the generally valid formula (2.9) for the pressure, we have

p ¼ 1

3
ulumT lm � 1

3
glmT lm ¼ 1

3
ulumT lm �

Z
R3

glmqlqmf
d3q
q0

: ð2:15Þ

Since glmqlqm ¼ qmqm ¼ 0 holds due to (2.14), we immediately conclude that

p ¼ e
3
¼ 1

3
T lmulum ¼ nT ; ð2:16Þ

in the ultra-relativistic case.

Further, when the basic unknown f in (2.11), the distribution function, is replaced by the relativistic

J€uuttner distribution function, see [24,25], then the collisionless transport equation (2.11) is in general no
longer valid, whereas the conservation laws (2.12) are still satisfied and will reduce to the relativistic Euler

equations. Apart from this if we take into account shock discontinuity then we need the weak form of

conservation laws and entropy inequality as given below:I
oX

N mðt; xÞdom ¼ 0;

I
oX

T lmðt; xÞdom ¼ 0;

I
oX

Smðt; xÞdom P 0: ð2:17Þ

Here the covariant vector dom is a positively oriented surface element on the boundary oX. It can be written

in covariant form as
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doj ¼ ejklm
X3
i;j;m¼1

oxk

oui
oxl

ouj
oxm

oum
dui duj dum;

where xa ¼ xaðu1; u2; u3Þ is a positively oriented parameterization of the boundary oX.
In the following we will only consider dimensionless physical quantities corresponding to kB ¼ 1, �h ¼ 1

and c ¼ 1. Also we will use jqj in place of q0 ¼ q0.
3. The ultra-relativistic Euler equations

Using the ultra-relativistic J€uuttner distribution (2.13) we obtain from the dimensionless form of the

moments (2.4)–(2.6)

Nl ¼ nul; T lm ¼ �pglm þ 4pulum; ð3:1Þ
Sl ¼ �Nl ln
n4

p3
þ cNl; r ¼ �n ln

n4

p3
þ cn; ð3:2Þ

where c may be any real dimensionless constant. Note that due to the mass conservation (2.12) the di-

vergence of Sl, which will give rise to the H-theorem formulated later, will not change when we add some

multiple of N l to Sl. Moreover r obeys the Gibbs equation

T d
r
n

� �
¼ pd

1

n

� �
þ d

e
n

� �
: ð3:3Þ

These formulas can be easily checked for a special Lorentz frame where u0 ¼ 1, u1 ¼ u2 ¼ u3 ¼ 0, i.e. where

the gas is locally at rest. Since the ultra-relativistic moments (3.1) are valid in a special Lorentz frame and

since these equations are written in tensor invariant form, they are generally valid in every Lorentz frame.
Using the moments (3.1) and the conservation laws (2.12), we get at regular points the three-dimensional

Euler equation in differential form

o

ot
ðn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ þ r � ðnuÞ ¼ 0; ð3:4Þ
o

ot
ð4pui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ þ

X3
k¼1

o

oxk
ðpdik þ 4puiukÞ ¼ 0; ð3:5Þ
o

ot
ð3p þ 4pu2Þ þ

X3
k¼1

o

oxk
ð4puk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ ¼ 0: ð3:6Þ

At regular points the function is continuously differentiable with respect to time and space. Note that Eqs.

(3.5) and (3.6) are a closed 4 by 4 system for p and u. The relativistic continuity equation (3.4) decouples

from the system. For given u it is a scalar equation for n.
In order to get the primitive variables we solve the equations

N 0ðt; xÞ ¼ nðt; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðt; xÞ

p
;

T 0kðt; xÞ ¼ 4pðt; xÞukðt; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðt; xÞ

p
;

T 00ðt; xÞ ¼ pðt; xÞ½3þ 4u2ðt; xÞ�;
ð3:7Þ
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for p ¼ nT , u, and n. This gives

pðt; xÞ ¼ 1

3

2
4� T 00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðT 00Þ2 � 3

X3
k¼1

ðT 0kÞ2
vuut

3
5;

ukðt; xÞ ¼ T 0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt; xÞ½pðt; xÞ þ T 00�

p ; nðt; xÞ ¼ N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

P3

k¼1½ukðt; xÞ�
2

q :

ð3:8Þ

Now we are looking for special solutions of the three-dimensional ultra-relativistic Euler equations, which

will not depend on x2, x3 but only on x ¼ x1. Moreover we restrict to a one-dimensional flow field

u ¼ ðuðt; xÞ; 0; 0ÞT,

ðn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þt þ ðnuÞx ¼ 0;

ð4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þt þ ðpð1þ 4u2ÞÞx ¼ 0;

ðpð3þ 4u2ÞÞt þ ð4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þx ¼ 0:

ð3:9Þ

In a one-dimensional case we know from the constitutive relations (3.1) that

N 0

T 01

T 00

0
@

1
A ¼

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

pð3þ 4u2Þ

0
@

1
A;

N 1

T 11

T 01

0
@

1
A ¼

nu
pð1þ 4u2Þ
4pu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

0
@

1
A: ð3:10Þ

The differential equations (3.9) constitute a strictly hyperbolic system with the characteristic velocities

k1 ¼
2u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

ffiffiffi
3

p

3þ 2u2
; k2 ¼

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; k3 ¼
2u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þ

ffiffiffi
3

p

3þ 2u2
: ð3:11Þ

These eigenvalues may first be obtained in the Lorentz rest frame where u ¼ 0. Then using the relativistic

additivity law for the velocities, we can easily obtain (3.11) in the general Lorentz frame. In the Lorentz rest
frame we obtain the positive speed of sound k ¼ 1ffiffi

3
p , which is independent of the spatial direction.

The differential equations (3.9) are not sufficient if we take shock discontinuities into account. Therefore

we choose a weak integral formulation which is given due to Oleinik [30] by curve integrals in time and

space, namelyI
oX

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dx� nudt ¼ 0;

I
oX

4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dx� pð1þ 4u2Þdt ¼ 0;

I
oX

pð3þ 4u2Þdx� 4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dt ¼ 0:

ð3:12Þ

Here X � Rþ
0 � R is a normal region in space–time and with a piecewise smooth, positively oriented

boundary. Note that this weak formulation takes discontinuities into account, since there are no derivatives

of the fields involved. The use of Oleinik�s formulation enables a direct proof of conservation laws and

entropy inequality, see [24]. If we apply the Gaussian divergence theorem to the weak formulation (3.12) in

time–space regions where the solution is regular we come back to the differential equation form of the Euler

equations (3.9).
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Furthermore we require that the weak solution (3.12) must also satisfy the entropy-inequalityI
oX

S0 dx� S1 dtP 0; ð3:13Þ

where

S0 ¼ �n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ln
n4

p3
; S1 ¼ �nu ln

n4

p3
: ð3:14Þ
4. Three-dimensional first-order kinetic scheme

We first formulate the scheme for the three-dimensional Euler equations. After that we solve the one-

dimensional Euler equations, using a special integration technique. Recalling the ultra-relativistic J€uuttner
phase density (2.13), we start with the given initial data nIðxÞ ¼ nð0; xÞ, TIðxÞ ¼ T ð0; xÞ, uIðxÞ ¼ uð0; xÞ. We

prescribe a time step sM > 0 and let tn ¼ nsM for n ¼ 0; 1; 2; 3; . . . be the maximization times. Then the
kinetic scheme in three-space dimensions is given by

Nlðtn þ sM ; xÞ ¼
Z
R3

qlfn x

�
� sM

q

jqj ; q
�
d3q
jqj ;

T lmðtn þ sM ; xÞ ¼
Z
R3

qlqmfn x

�
� sM

q

jqj ; q
�
d3q
jqj ;

Slðtn þ sM ; xÞ ¼ �
Z
R3

qlðfn ln fnÞ x

�
� sM

q

jqj ; q
�
d3q
jqj ;

ð4:1Þ

with the ultra-relativistic initial phase density at the maximization time tn given as

fnðy; qÞ ¼ f �
J ðnðtn; yÞ; T ðtn; yÞ; uðtn; yÞ; qÞ: ð4:2Þ

Moreover n; T ; ul are calculated from Nl and T lm for the next time step by using the relations (3.8).

Further, we can apply an important simplification of the volume integrals (4.1)1;2 for the free-flight

moments, see [24]. We can see in (4.2) that the fields nðt; yÞ, T ðt; yÞ and uðt; yÞ are not depending on

jqj but only on the unit vector w ¼ ðw1;w2;w3ÞT ¼ q=jqj. This fact enables us to reduce the three-

fold volume integrals to the twofold surface integrals by applying polar coordinates. Using the

abbreviations

Uðy;wÞ ¼ 1

4p
nðyÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� w � uðyÞÞ3

;

Wðy;wÞ ¼ 3

4p
ðnT ÞðyÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� w � uðyÞÞ4

;

ð4:3Þ

we can now carry out the integration with respect to jqj explicitly and obtain the following reduced surface

integrals for the moments:

Nlðtn þ sM ; xÞ ¼
I
oBð1;0Þ

wlUðx� sMw;wÞdSðwÞ;

T lmðtn þ sM ; xÞ ¼
I
oBð1;0Þ

wlwmWðx� sMw;wÞdSðwÞ;
ð4:4Þ
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where w0 ¼ 1 and w ¼ q=jqj is the unit vector in direction of q and Bðr; x0Þ is the ball with radius r and

center x0. Its boundary is the sphere oBðr; x0Þ. These surface integrals reflect the fact that in the ultra-

relativistic case the particles are moving on the surface of the light cone.

Proposition 4.1. Let 0 < s < sM and n ¼ 0; 1; 2; . . . We consider the moments in the free-flight between the
two maximization times tn and tnþ1. Within this free-flight zone the moments Nlðtn þ s; xÞ, T lmðtn þ s; xÞ and
the entropy four-vector Slðtn þ s; xÞ satisfy the following conservation laws in weak integral form:I

oX
N mðtn þ s; xÞdom ¼ 0;

I
oX

T lmðtn þ s; xÞdom ¼ 0;

I
oX

Smðtn þ s; xÞdom ¼ 0:

Here the covariant vector dom is a positively oriented surface element to the boundary oX. It can be written in
covariant form as

doj ¼ ejklm
X3
i;j;m¼1

oxk

oui
oxl

ouj
oxm

oum
dui duj dum;

where xa ¼ xaðu1; u2; u3Þ is a positively oriented parameterization of the boundary oX.

Remark. Note that these weak formulations correspond to the differential equations

oN m

oxm
ðtn þ s; xÞ ¼ 0;

oT lm

oxm
ðtn þ s; xÞ ¼ 0;

oSm

oxm
ðtn þ s; xÞ ¼ 0: ð4:5Þ
Proof. To see the proof, the reader is referred to our article [24]. �

Proposition 4.2. Let X � Rþ
0 � R3 be any bounded convex region in time and space. By dom we denote the

positively oriented surface element of oX. Let sM > 0 be a fixed time step. The moment representations (4.1)
calculated by the iterated scheme defined above have the following properties:
(i) The conservation laws for the particle number, the momentum and energy hold, i.e.I

oX
N m dom ¼ 0;

I
oX

T lm dom ¼ 0: ð4:6Þ

(ii) The following entropy inequality is satisfiedI
oX

Sm dom P 0: ð4:7Þ
Proof. For the proof see our article [24]. �

4.1. Positivity and L1-stability of the kinetic scheme

Here we show that our kinetic scheme preserves positivity of the density and pressure.

Theorem 4.1. Assume that the initial distribution function satisfies fnðy; qÞP 0, additionally fnðy; qÞ does not
vanish almost everywhere for all microscopic velocities q, macroscopic velocities u, positive densities n and
pressures p. Then the numerical solution obtained by the resulting kinetic scheme has the following property:
Its density, pressure and total energy remain positive for all times:
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nðtn þ s; xÞ > 0; pðtn þ s; xÞ ¼ 1

3
eðtn þ s; xÞ > 0; Eðtn þ s; xÞ > 0: ð4:8Þ

This also means that the numerical scheme defined by (4.1) is stable in L1.

Proof. Since the particle density is defined as n ¼
ffiffiffiffiffiffiffiffiffiffiffi
NlNl

p
, we have to prove that

NlNlðtn þ s; xÞ ¼ ððN 0Þ2 � ðN 1Þ2 � ðN 2Þ2 � ðN 3Þ2Þðtn þ s; xÞ > 0: ð4:9Þ

According to the Cauchy–Schwarz inequality, if we have two functions f and g then

Z b

a
f � gdx

� �2

6

Z b

a
f 2 dx

� �
�
Z b

a
g2 dx

� �
; ð4:10Þ

where equality holds iff the functions f and g are linearly dependent.

From the moments (4.1)1, we have

N 0ðtn þ s; xÞ ¼
Z
R3

fn x

�
� s

q

jqj ; q
�
d3q > 0: ð4:11Þ

Using again the free-flight moments (4.1)1 and the Cauchy–Schwarz inequality, we get

ðN 1Þ2ðtn þ s; xÞ ¼
Z
R3

q1fn x

��
� s

q

jqj ; q
�
d3q
jqj

�2

¼
Z
R3

q1

jqj
ffiffiffiffi
fn

p� �
�

ffiffiffiffi
fn

p� �� �
x

��
� s

q

jqj ; q
�
d3q
�2

<

Z
R3

q1

jqj
ffiffiffiffi
fn

p� �2

x

� 
� s

q

jqj ; q
�
d3q

!
�
Z
R3

ffiffiffiffi
fn

p� �2
x

��
� s

q

jqj ; q
�
d3q
�

¼ N 0ðtn þ s; xÞ
Z
R3

q1

jqj

� �2

fn x

� 
� s

q

jqj ; q
�
d3q

!
: ð4:12Þ

In Cauchy–Schwarz inequality we have not taken the equality sign, because the functions q1

jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnðy; qÞ

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fnðy; qÞ
p

are linearly independent. Similarly

ðN 2Þ2ðtn þ s; xÞ < N 0ðtn þ s; xÞ
Z
R3

q2

jqj

� �2

fn x

� 
� s

q

jqj ; q
�
d3q

!
;

ðN 3Þ2ðtn þ s; xÞ < N 0ðtn þ s; xÞ
Z
R3

q3

jqj

� �2

fn x

� 
� s

q

jqj ; q
�
d3q

!
:

ð4:13Þ

Now we use (4.12) and (4.13) in (4.9). Also in the ultra-relativistic case

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2

q
;

therefore we get
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NlNlðtn þ s; xÞ ¼ ððN 0Þ2 � ðN 1Þ2 � ðN 2Þ2 � ðN 3Þ2Þðtn þ s; xÞ

> N 0ðtn þ s; xÞ N 0ðtn

 
þ s; xÞ �

Z
R3

P3

k¼1ðqkÞ
2

jqj2
fn x

�
� s

q

jqj ; q
�
d3q

!

¼ N 0ðtn þ s; xÞ N 0ðtn
�

þ s; xÞ �
Z
R3

fn x

�
� s

q

jqj ; q
�
d3q
	
¼ 0:

Thus we have proved that nðtn þ s; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N lNlðtn þ s; xÞ

p
> 0.

Now using the kinetic scheme (4.1)2 and relation (2.16), we get

pðtn þ s; xÞ ¼ 1

3
eðtn þ s; xÞ ¼ 1

3
ulumT lmðtn þ s; xÞ ¼ 1

3

Z
R3

qlqmfn x

�
� s

q

jqj ; q
�
d3q
jqj ulum

¼ 1

3

Z
R3

qlul
� �2

fn x

�
� s

q

jqj ; q
�
d3q
jqj > 0:

Thus we conclude that pðtn þ s; xÞ > 0: Also we know from (4.1)2 that

T 00ðtn þ s;xÞ ¼
Z
R3

jqjfn x

�
� s

q

jqj ; q
�
d3q > 0: ð4:14Þ

Now since our scheme is conservative, using (4.11), (4.14) and jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

k¼1ðqkÞ
2

q
, we have

jjN 0ðtn þ s; :ÞjjL1ðRÞ ¼
Z
R3

jN 0ðtn þ s; xÞjd3x ¼
Z
R3

N 0ðtn þ s; xÞd3x ¼
Z
R3

N 0ðtn; xÞd3x

¼
Z
R3

jN 0ðtn; xÞjd3x ¼ jjN 0ðtn; :ÞjjL1ðRÞ:

Similarly jjT 00ðtn þ s; :ÞjjL1ðRÞ ¼ kT 00ðtn; :ÞkL1ðRÞ. Now using (4.1) with y ¼ x� s q

jqj and Cauchy–Schwarz

inequality (4.10) we get

jjT 0kðtn þ s; :ÞjjL1ðRÞ ¼
Z
R3

Z
R3

qkfnðy; qÞ
d3q
jqj










d3x ¼

Z
R3

Z
R3

ffiffiffiffi
fn

p� �
qk

ffiffiffiffi
fn

p� �
ðy; qÞ d

3q
jqj










d3x

<

Z
R3

Z
R3

fnðy; qÞ
d3q
jqj










d3x �

Z
R3

Z
R3

jqj2fnðy; qÞ
d3q
jqj










d3x

� 	1=2

¼ jjnðtn; :ÞjjL1ðRÞjjT 00ðtn; :ÞjjL1ðRÞ
� �1=2

:

This proves the L1-stability of the scheme. �
5. First-order kinetic scheme in 1D

In the following we are looking for spatially one-dimensional solutions, which are nevertheless solutions

to the full three-dimensional equations. We only consider solutions which depend on t and x ¼ x1 and

satisfy n ¼ nðt; xÞ, u ¼ ðuðt; xÞ; 0; 0Þ, p ¼ pðt; xÞ. We will use the generally valid Equation p ¼ nT and go

back to the full three-dimensional scheme.

In order to calculate the surface integrals (4.4) we introduce instead of the unit vector w the new vari-
ables �1 6 n 6 1 and 05u52p by
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w1 ¼ n; w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
sinu; w3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cosu ð5:1Þ

with the surface element dSðwÞ ¼ dndu.
Note that the quantities n; T ; u in the integrals (4.4) do not depend on the variable u. This fact enables us

to carry out the integration with respect to u directly. Thus the twofold surface integral reduces to a simple

n-integral. For abbreviation we introduce

Uðy; nÞ ¼ 1

2

nðyÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� nuðyÞÞ3

; Wðy; nÞ ¼ 3

2

ðnT ÞðyÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� nuðyÞÞ4

; ð5:2Þ

then the reduced integrals for the moments can be written as

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

Uðx� sMn; nÞdn; N 1ðtn þ sM ; xÞ ¼
Z 1

�1

nUðx� sMn; nÞdn; ð5:3Þ
T 00ðtn þ sM ; xÞ ¼
Z 1

�1

Wðx� sMn; nÞdn;

T 01ðtn þ sM ; xÞ ¼
Z 1

�1

nWðx� sMnÞdn;

T 11ðtn þ sM ; xÞ ¼
Z 1

�1

n2Wðx� sMnÞdn:

ð5:4Þ

In order to obtain the fields n, u and p we can use the one-dimensional form of (3.8) as

pðtn þ sM ; xÞ ¼
1

3

�
� T 00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðT 00Þ2 � 3ðT 01Þ2

q 	
;

uðtn þ sM ; xÞ ¼
T 01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pðtn þ sM ; xÞ pðtn þ sM ; xÞ þ T 00½ �
p ;

nðtn þ sM ; xÞ ¼
N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ uðtn þ sM ; xÞ2
q :

ð5:5Þ

Here again N 0 ¼ N 0ðtn þ sM ; xÞ, T 00 ¼ T 00ðtn þ sM ; xÞ and T 01 ¼ T 01ðtn þ sM ; xÞ are given by the above ki-

netic scheme.

5.1. Numerical implementation of the scheme in 1D

Here we explain the numerical implementation of the one-dimensional kinetic scheme. However the

procedure is similar for the multi-dimensional case.

• We start with the values of initial data nðtn; xÞ, uðtn; xÞ and T ðtn; xÞ at equidistant grid points.

• We specify the length L of the spatial cells, the number Nx of elements (intervals) in the spatial domain

06 x6 L, the final time tf of output and the number Em of maximization times. For i ¼ 0; . . . ;Nx, we

introduce the nodes xi ¼ i � L
Nx
.

• The time step sM is calculated by sM ¼ tf
Em
. The step in the spatial domain is Dx ¼ L=Nx.

• Our aim is to calculate the moments (5.3) and (5.4). These moments are then used to update the fields n,
u and T .
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• Since we only know the values of the fields at the nodal points, the free-flight fields in the integrands of

(5.3) and (5.4) must be calculated from the knowledge of the nodal values at the points xi. Here we use

linear interpolation between two subsequent nodal points xi and xiþ1. We use the following interpolation

formula:

/ðxj � ns; nÞ ¼ ð1� gÞ/ðxi; nÞ þ g/ðxiþ1; nÞ;
wðxj � ns; nÞ ¼ ð1� gÞwðxi; nÞ þ gwðxiþ1; nÞ;

ð5:6Þ

where xj � ns ¼ xi þ gðxiþ1 � xiÞ for 06 g6 1. Here /ðxi; nÞ and wðxi; nÞ are the phase densities given by

(5.2). The relation between xi, xj and g is shown in Fig. 1.

• The n-integration in the moment integrals is performed with the composite trapezoidal rule.

• The values of the fields n, u and T are calculated by using the relations (5.5). These fields are used in

order to initialize the scheme for the next time step.

5.2. Application of boundary conditions

Here we generalize the above numerical kinetic scheme in order to include boundaries. We are restricting

ourselves to one space dimension, however the procedure is analogous for the multi-dimensional case.
It is possible that a point y ¼ x� ns is outside the computational domain 06 x6 L, i.e., the fluid particle

has then crossed the domain boundaries during free-flight. Consequently, a boundary strategy is required to

find fnðy; nÞ so that physically meaningful desired boundary conditions are satisfied.

5.2.1. Reflecting boundary conditions

In Fig. 2 a single gas particle trajectory is shown. We consider the lower boundary as a solid wall,

therefore the particles having negative velocity will reach the wall. The particle starts from a position x�
with negative microscopic velocity and reach the lower boundary in time s1. The particle then reflects with

positive velocity and reaches the position x in time s2. Since the reflection from the lower adiabatic wall is
Fig. 1. Interpolation of y ¼ xj � ns at the grid points xi and xiþ1.



Fig. 2. Trajectory of a single gas particle.
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elastic, therefore particle incident and reflected angles are the same. Now using Fig. 2 we get the following

relations:

x ¼ s2n; x� ¼ �s1n; s1 þ s2 ¼ s: ð5:7Þ

Subtracting (5.7)1;2 and using (5.7)3 we get x� ¼ jx� snjP 0.

Therefore in case of lower adiabatic boundary we replace /ðx� sn; nÞ and wðx� sn; nÞ in the kinetic

scheme (5.3) and (5.4) by /ðjx� snj; n�Þ and wðjx� snj; n�Þ for n� ¼ �n.
Similarly if we consider the boundary x ¼ L as adiabatic wall then only those particles will reach to the

boundary which have positive microscopic velocity n. Let D ¼ y � L then the reflecting boundary condi-

tions will be x� ¼ L� D and n� ¼ �n. Thus we will replace /ðx� sn; nÞ and /ðx� sn; nÞ in the kinetic

scheme (5.3) and (5.4) by /ðx�; n�Þ and wðx�; n�Þ.

5.2.2. Absorbing boundary conditions

When the fluid particle crosses the lower boundary as shown by dashed line in Fig. 2, i.e., y ¼ x� ns < 0,
then we replace /ðx� sn; nÞ and /ðx� sn; nÞ in the kinetic scheme (5.3) and (5.4) by /ðjx� snj; nÞ and

wðjx� snj; nÞ. Similarly if y ¼ x� ns > L, i.e., fluid particles have acrossed the upper boundary then we take

x� ¼ L� D where D ¼ y � L and replace /ðx� sn; nÞ and /ðx� sn; nÞ in the kinetic scheme (5.3) and (5.4)

by /ðx�; nÞ and wðx�; nÞ.

5.2.3. Inflow boundary conditions

Let ql, vl, Tl and qu, vu, Tu be the given values of the fields at lower or upper boundaries, respectively.

When the fluid particle is at the lower boundary, i.e., y ¼ x� ns6 0, then we calculate

fnðy; nÞ ¼ fnðql; vl; Tl; nÞ:

Similarly if y ¼ x� nsP L, then we calculate

fnðy; nÞ ¼ fnðnu; vu; Tu; nÞ:
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6. Second-order one-dimensional kinetic scheme

Here we extend our one-dimensional kinetic scheme [24] to second order. We will use the approach of
Deshpande [8] which he has used in order to obtain second-order accuracy in a one-dimensional kinetic

scheme for the non-relativistic Euler equations. There are two steps in order to get second-order accuracy in

time. In the first step we will proceed to achieve second-order accuracy in time, while the second step is to

achieve second-order accuracy in space. There are two approaches to achieve second-order accuracy in time

and both approaches lead to the same result. We will present both approaches in our study.

The first-order kinetic schemes described in the previous sections suffer from the major disadvantage

that the numerical diffusion is proportional to the time step. From the physical point of view, such a

result is only to be expected because the fluid particles in the above kinetic schemes are allowed to
move over the time step sM before they undergo collisions. The distance traveled between collisions is

thus proportional to sM . From the kinetic theory it then follows that the mean free path, and hence the

viscosity, will be of the order sM . This is a very large amount of viscosity, as the results shown later

will verify. Therefore, a modifications in the above kinetic schemes is required that will ensure that the

method has a high-order accuracy. We will show how it is possible to achieve second-order accuracy.

6.1. First approach: second-order accuracy in time

First we aim for second-order accuracy in time. For this purpose it will be sufficient to consider the zero

components N 0, T 01 and T 00. In the following calculations we only follow the component N 0 because the

procedure for T 01 and T 00 is similar. The second-order accurate Taylor expansions of N 0ðtn þ sM ; xÞ is

N 0ðtn þ sM ; xÞ ¼ N 0ðtn; xÞ þ sM
oN 0

ot
ðtn; xÞ þ

1

2
s2M

o2N 0

ot2
ðtn; xÞ þOðs3MÞ: ð6:1Þ

This expansions contain the first- and second-order time derivatives of N 0. Similar expansion can also be

obtained for T 01ðtn þ sM ; xÞ and T 00ðtn þ sM ; xÞ. The first-order time derivatives can be replaced in terms of the

first-order space derivatives by using the Euler equations (3.9). To replace the second-order time derivatives

in terms of space derivatives requires detailed manipulations. Using Eqs. (3.9) and (3.10) in (6.1) we get

N 0ðtn þ sM ; xÞ ¼ N 0ðtn; xÞ � sM
oN 1

ox
ðtn; xÞ �

1

2
s2M

o

ox
oN 1

ot
ðtn; xÞ

� �
þOðs3MÞ: ð6:2Þ

Our main goal is to compare the second-order accurate Taylor expansion (6.2) for N 0ðtn þ sM ; xÞ and

similarly for T 01ðtn þ sM ; xÞ and T 00ðtn þ sM ; xÞ with the kinetic scheme (5.3) and (5.4) after expanding the

free-flight phase densities up to Oðs3MÞ. This comparison will give us the terms which are missing in the first-

order kinetic schemes, the so-called antidiffusive terms. The addition of these terms will lead to the second-

order accuracy in time of the first-order kinetic scheme.

In order to compare Eqs. (6.2) with the kinetic scheme solutions (5.3) and (5.4), we take a second-order

accurate Taylor expansion of the reduced free-flight phase densities /ðx� sMn; nÞ and wðx� sMn; nÞ given in
(5.2). Here again we only follow the expansion of /ðx� sMn; nÞ since the procedure is similar for

wðx� sMn; nÞ, we get

/ðx� sMn; nÞ ¼ /ðtn; x; nÞ � nsM
o/
ox

ðtn; x; nÞ þ
n2s2M
2

o2/
ox2

ðtn; x; nÞ þOðs3MÞ: ð6:3Þ

Integrating (6.3) we get for / ¼ /ðtn; x; nÞ,Z 1

�1

/ðx� sMn; nÞdn ¼
Z 1

�1

/dn� sM
o

ox

Z 1

�1

n/dnþ 1

2
s2M

o

ox
o

ox

Z 1

�1

n2/dn

� �
þOðs3MÞ: ð6:4Þ
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The reduced equilibrium phase density /ðtn; x; nÞ satisfy the following relation:

N 0ðtn; xÞ ¼
Z 1

�1

/ðtn; x; nÞdn: ð6:5Þ

Similar relations also exists in case of the reduced phase density wðtn; x; nÞ. Using the relations (6.5) in (6.4)
we finally getZ 1

�1

/ðx� sMn; nÞdn ¼ N 0ðtn; xÞ � sM
oN 1

ox
ðtn; xÞ þ

1

2
s2M

o

ox
o

ox

Z 1

�1

n2/dn

� �
þOðs3MÞ: ð6:6Þ

Eqs. (6.6) is the solution coming from the first-order kinetic schemes (5.3) and (5.4) when we expand the
free-flight phase density up to Oðs3MÞ. Similar relations can also be obtained in case of the phase density

wðx� sMn; nÞ by repeating the above procedure.

Now we can rewrite the second-order accurate solutions (6.2) in the following form by adding and

subtracting appropriate order s2M term that appeared in (6.6):

N 0ðtn þ sM ; xÞ ¼ N 0ðtn; xÞ � sM
oN 1

ox
ðtn; xÞ þ

1

2
s2M

o

ox
o

ox

Z 1

�1

n2/dn

� �

� 1

2
s2M

o

ox
oN 1

ot
ðtn; xÞ

�
þ o

ox

Z 1

�1

n2/dn

�
þOðs3MÞ: ð6:7Þ

Now using (6.6) in (6.7) and repeating the above steps for T 01ðtn þ sM ; xÞ and T 00ðtn þ sM ; xÞ we finally get

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/ðx� sM ; nÞdn�
1

2
s2M

o

ox
oN 1

ot
ðtn; xÞ

�
þ o

ox

Z 1

�1

n2/dn

�
þOðs3MÞ;

T 01ðtn þ sM ; xÞ ¼
Z 1

�1

nwðx� sM ; nÞdn�
1

2
s2M

o

ox
oT 11

ot
ðtn; xÞ

�
þ o

ox

Z 1

�1

n3wdn

�
þOðs3MÞ;

T 00ðtn þ sM ; xÞ ¼
Z 1

�1

wðx� sM ; nÞdnþOðs3MÞ:

ð6:8Þ

Using Appendix A we can simplify the terms of order s2M in (6.8)1;2 in order to get

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/ðx� sMn; nÞdnþ
1

2
s2M

o

ox
gðn; u; pÞ þOðs3MÞ;

T 01ðtn þ sM ; xÞ ¼
Z 1

�1

nwðx� sMn; nÞdnþ
1

2
s2M

o

ox
hðu; pÞ þOðs3MÞ;

T 00ðtn þ sM ; xÞ ¼
Z 1

�1

wðx� sMn; nÞdnþOðs3MÞ;

ð6:9Þ

where

gðn; u; pÞ ¼
 

� ð1þ u2Þ�1=2

u2
þ 1

u3
arcsinhðuÞ

!
on
ox

� 3nð1þ u2Þ�1=2

4pð3þ 2u2Þ
op
ox

þ 9n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u3ð3þ 2u2Þ

�
� 3n

u4
arcsinhðuÞ

�
ou
ox

;

hðu; pÞ ¼ 9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u4ð3þ 2u2Þ

�
þ 3 arcsinhð�uÞ

u5

�
u
op
ox

�
� 4p

ou
ox

�
:

ð6:10Þ
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On the right-hand sides of Eqs. (6.9)1;2 the first terms are from the old kinetic scheme, while the second

terms are the antidiffusive terms which must be added to N 0 and T 01 for the second-order accuracy. While

the energy density T 00 is already second-order accurate in time. In the non-relativistic case Deshpande [8]

observed that the particle density coming from the first-order kinetic scheme was already second-order

accurate in time, but in the first-order relativistic kinetic scheme we found that the energy density is second-

order accurate in time. This is due to the fact that in the non-relativistic Euler equations case the flux of the

continuity equation is equal to the conserved momentum variable, while in the relativistic Euler equations

case the flux in the total energy equation is equal to the conserved momentum variable.
6.2. Second approach: second-order accuracy in time

Since the free-flight phase density is very far from equilibrium, the reduced phase densities /ðt; x; nÞ and
wðt; x; nÞ given by (5.2) do not satisfy the reduced free-flight transport equation, i.e.,

o/
ot

þ n
o/
ox

6¼ 0;
ow
ot

þ n
ow
ox

6¼ 0: ð6:11Þ

In fact from (5.2) we have

o/
ot

þ n
o/
ox

¼ on
ot

�
þ n

on
ox

�
o/
on

þ ou
ot

�
þ n

ou
ox

�
o/
ou

; ð6:12Þ
ow
ot

þ n
ow
ox

¼ op
ot

�
þ n

op
ox

�
ow
op

þ ou
ot

�
þ n

ou
ox

�
ow
ou

: ð6:13Þ

The right-hand sides of (6.12) and (6.13) are very characteristic of the Chapman–Enskog (CE) non-rela-

tivistic theory and the method of Ohwada [29]. Using Appendix A we can replace the time derivatives of n,
u and p in Eqs. (6.13) and (6.13) in terms of the space derivatives. We obtain

o/
ot

þ n
o/
ox

¼ QCE/; ð6:14Þ
ow
ot

þ n
ow
ox

¼ MCEw; ð6:15Þ

where QCE and MCE are polynomials given by

QCE ¼ Q1

on
ox

þ Q2

op
ox

þ Q3

ou
ox

; ð6:16Þ
MCE ¼ M1

op
ox

þM2

ou
ox

; ð6:17Þ

with

Q1 ¼
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� u

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; Q2 ¼
3 4u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� 4u2n� 3n

� �
4p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð3þ 2u2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� nuÞ

;

Q3 ¼ 3
n2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð3þ 2u2Þ þ 2u2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� nuÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð1þ 2nu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ � 2nuffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

ð3þ 2u2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� nuÞ

 !
;

ð6:18Þ
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and

M1 ¼
uð1� 3n2Þ þ 2u2ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
n� n2u� uÞ

pð3þ 2u2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� nuÞ

; M2 ¼
4

3
Q3: ð6:19Þ

The polynomials QCE and QCE have interesting properties, i.e.,

Z 1

�1

QCE/dn ¼ 0;

Z 1

�1

MCEwdn ¼ 0;

Z 1

�1

nMCEwdn ¼ 0: ð6:20Þ

These properties follow from the integration of (6.14) and (6.15) and the fact that the moments satisfy

conservation laws. Furthermore, one can directly check these properties by a simple n-integration in

mathematics packages like, Maple or Mathematica. We will see at the end that these properties are also
important for the conservativity of the second-order kinetic scheme. We are now ready to construct the

second-order accurate kinetic scheme which was also obtained in the first approach. In the following we give

the details of the procedure for N 0ðtn þ sM ; xÞ, because it follow the similar steps for T 01ðtn þ sM ; xÞ and

T 00ðtn þ sM ; xÞ. Using the Taylor expansion we have

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/ðtn þ sM ; x; nÞdn ¼
Z 1

�1

/

�
þ sM

o/
ot

þ 1

2
s2M

o2/
ot2

�
dnþOðs3MÞ; ð6:21Þ

where / ¼ /ðtn; x; nÞ. As stated before the equilibrium phase densities / and w do not satisfy the free-flight

equation. But on the other hand they satisfy the moment equations of the free-flight equation which are

infact the Euler equations, for example,Z 1

�1

o/
ot

dnþ
Z 1

�1

n
o/
ox

dn ¼ 0; ð6:22Þ

is the continuity equation of the Euler equations (3.9). Similarly energy and momentum equations can be

obtained from the moment equations of w. Therefore, in order to replace the first-order time derivative of /
in above expression we use (6.21) and (6.22), we get

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/

�
� sMn

o/
ox

þ 1

2
s2M

o2/
ot2

�
dnþOðs3MÞ: ð6:23Þ

Using the relation (6.14), we obtain

o2/
ot2

¼ �n
o

ox
o/
ot

� �
þ o

ot
ðQCE/Þ ¼ n2

o2/
ox2

� n
o

ox
ðQCE/Þ þ

o

ot
ðQCE/Þ: ð6:24Þ

Substituting the above expression for the second-order derivatives of / in (6.23) we get after using (6.3) for

y ¼ x� sMn,

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/ðy; nÞdn� s2M
2

Z 1

�1

n
o

ox
ðQCE/Þdn

�
� o

ot

Z 1

�1

QCE/dn

�
þOðs3MÞ:

The last terms in the Oðs3MÞ part of the above equation are zero due to the properties (6.20) of QCE/. After

repeating the above steps for other components T 01ðtn þ sM ; xÞ and T 00ðtn þ sM ; xÞ we finally get

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/ðy; nÞdn� 1

2
s2M

Z 1

�1

n
o

ox
ðQCE/ðtn; x; nÞÞdnþOðs3MÞ; ð6:25Þ
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T 01ðtn þ sM ; xÞ ¼
Z 1

�1

nwðy; nÞdn� 1

2
s2M

Z 1

�1

n2
o

ox
ðQCE/ðtn; x; nÞÞdnþOðs3MÞ;

T 00ðtn þ sM ; xÞ ¼
Z 1

�1

wðy; nÞdnþOðs3MÞ;
ð6:26Þ

which shows that in addition to the /ðy; nÞ andwðy; nÞ terms we have one more term in the first two equations

containing the polynomialsQCE andMCE. Hence the reduced J€uuttner distributions/ andw alonewill not yield

a second-order accurate kinetic scheme for particle density and momentum, however the total energy T 00 is

already second-order accurate in time. Note that if we evaluate the integrals of the second terms in (6.25) and

(6.26)1, we get the same correction terms g and h as given in (6.9). In order to obtain (6.9) one can simply

integrate the coefficients of s2M in above equation using Mathematica or Maple. Let us define

/CEðy; nÞ ¼ / 1
�

þ sM
2
QCE

�
ðy; nÞ; wCEðy; nÞ ¼ w 1

�
þ sM

2
MCE

�
ðy; nÞ: ð6:27Þ

We can recast (6.25) and (6.26) as

N 0ðtn þ sM ; xÞ ¼
Z 1

�1

/CEðx� sMn; nÞdnþOðs3MÞ;

T 01ðtn þ sM ; xÞ ¼
Z 1

�1

nwCEðx� sMn; nÞdnþOðs3MÞ;

T 00ðtn þ sM ; xÞ ¼
Z 1

�1

wCEðx� sMn; nÞdnþOðs3MÞ:

ð6:28Þ

Due to the properties (6.20) of QCE/ and MCEw we can see that the zero quantities N 0, T 01 and T 00 are

identical within the truncation error, i.e.Z 1

�1

ð/CE � /Þdn ¼ 0;

Z 1

�1

nðwCE � wÞdn ¼ 0;

Z 1

�1

ðwCE � wÞdn ¼ 0:

These conditions also can be regarded as conservation conditions, for more details see Deshpande [8] in the

non-relativistic case.

Several important features of the above second-order accurate in time kinetic scheme are worth noting.
Eqs. (6.28), containing different distribution functions, have been obtained from Eqs. (6.9) or (6.25). As

stated before the right-hand sides of Eqs. (6.9)1;2 and (6.25)1;2 contain two terms. The first terms, which are

moments of the free-flight phase densities /ðx� nsM ; nÞ and /ðx� nsM ; nÞ, are upwind in character. The

second terms cannot be expressed as moments of /ðx� sMn; nÞ and wðx� sMn; nÞ and are antidiffusive. The

antidiffusive terms may be absorbed in the upwind term only if the distribution function is not the rela-

tivistic Maxwellian, i.e., J€uuttner distribution. Eqs. (6.28) are an upwind version of a second-order accurate

solution in which the perturbed relativistic Maxwellian distributions are employed.

6.3. Second-order accuracy in space

Another important point about Eqs. (6.28) is that, /CEðx� nsM ; nÞ and /CEðx� nsM ; nÞ need to be

evaluated at various values of n. Hence, as noted before, some kind of interpolation scheme is required.
This scheme must be second-order accurate in space and should not yield non-negative interpolated values,

and should satisfy the TVD property. A procedure is given below.

Let /CE and wCE be given at mesh points. Also let the mesh point i corresponding to point j be such that

xj � nsM ¼ xi þ gDx; 06 g6 1:
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The relation between xj and xi and g is given in Fig. 1. The functions /CEðxj � nsM ; nÞ ¼ /CEðxi þ gDx; nÞ
and wCEðxj � nsM ; nÞ ¼ wCEðxi þ gDx; nÞ then depends on the neighbouring mesh points i� 1. Therefore the

second-order interpolation for any function f will be

f ðxi þ gDx; nÞ ¼ fi þ
g
2
ðfiþ1 � fi�1Þ þ

g2

2
ðfiþ1 � 2fi þ fi�1Þ; ð6:29Þ

where fi can be /CEðtn; xi; nÞ or wCEðtn; xi; nÞ. In order to suppress oscillations in the numerical results we use

the min-mod nonlinear limiters [18,31,33] on the numerical derivatives appearing in the antidiffusive terms

QCE and MCE given in (6.16) and (6.17). These min-mod nonlinear limiters also ensure the positivity of the

phase densities /CE and wCE.

As pointed out by Deshpande [8], the expression (6.29) does not automatically ensure positivity of
f ðxi þ gDx; nÞ even if fi�1, fi and fiþ1 are assumed to be positive. This is particularly true for calculations

near shocks. With the method of Chakravarthy and Osher [2] limiting the contribution of the second

difference, it is possible to devise an interpolation scheme that satisfies the TVD condition and guarantee

the positivity of /CEðxi þ gDx; nÞ and wCEðxi þ gDx; nÞ, see [8]. The second-order accurate Taylor expansion
(6.29) can be rewritten as

f ðxi þ gDx; nÞ ¼ fi þ
g
2
ðfiþ1 � fi þ fi � fi�1Þ þ

g2

2
ðfiþ1 � fi þ fi�1 � fiÞ

¼ fi þ fiþ1ð � fiÞ
gð1þ gÞ

2

�
þ gð1� gÞ

2
rD

	
; ð6:30Þ

where

rD ¼ Backward difference

Forward difference
¼ fi � fi�1

fiþ1 � fi
:

In smooth regions

fi�1 ¼ fi � Dxf 0
i þ

ðDxÞ2

2
f 00
i þOðDx3Þ; ð6:31Þ

then

fi � fi�1

Dxf 0
i

¼ 1� Dx
2

f 00
i

f 0
i
þOðDx2Þ;

fiþ1 � fi
Dxf 0

i
¼ 1þ Dx

2

f 00
i

f 0
i
þOðDx2Þ:

ð6:32Þ

This implies

rD ¼ fi � fi�1

fiþ1 � fi
¼ 1

�
� Dx

2

f 00
i

f 0
i
þOðDx2Þ

�
1

�
þ Dx

2

f 00
i

f 0
i
þOðDx2Þ

��1

;

¼ 1

�
� Dx

2

f 00
i

f 0
i
þOðDx2Þ

�
1

�
� Dx

2

f 00
i

f 0
i
þOðDx2Þ

�
: ð6:33Þ

Hence we finally get

rD ¼ 1� Dx
f 00
i

f 0
i
þOðDx2Þ; ð6:34Þ
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and thus rD remains close to unity. In flow regions near shocks or contact surfaces, rD can wildly vary and

some limiting criterion is required to preserve the TVD condition. The key to satisfy the TVD condition lies

in requiring

06
gð1þ gÞ

2
þ gð1� gÞ

2
rD 6 1: ð6:35Þ

Two cases arise, namely, rD P 0 and rD 6 0. If we consider the case of rD P 0, the condition in Eq. (6.35) is

satisfied if

rD 6 1þ 2

g
: ð6:36Þ

As 06 g6 1, the right-hand side of the above inequality has minimum value of 3. One way of satisfying Eq.

(6.36) is to limit the value of rD to 3 when rD P 0. For the case when rD 6 0, the condition in Eq. (6.35) is

satisfied if

gð1þ gÞ
2

þ gð1� gÞ
2

rD ¼ gð1þ gÞ
2

� gð1� gÞ
2

jrDjP 0; ð6:37Þ

or equivalently, if

jrDj6
1þ g
1� g

: ð6:38Þ

Thus, by limiting the relative values of the forward and backward differences and taking rD ¼ 1 outside

these limits, we find the interpolation formula in Eq. (6.30) yields not only positive values of f ðxi þ gDx; nÞ
but also satisfies the TVD condition. As mentioned before the basic input to Eq. (6.30) is the set of positive

values of fi at all mesh points.

From the analysis in this section it has become clear that the second-order accurate kinetic scheme

requires the use of distribution functions /CE and wCE given in Eq. (6.27), as well as second-order accurate

interpolation scheme. The extension of this kinetic scheme to two-dimensional case is analogous.

Remark. Due to the presence of QCE and MCE, the distribution functions /CE and wCE given in (6.27) not

only depend on the local values of the field variables but also depend on their neighbouring values as well.

The support of /CE and wCE is thus more than that of local phase densities / and w used in the first-order

kinetic scheme.
7. Numerical case studies

In the following we present numerical test cases for the solution of the ultra-relativistic Euler

equations. For the comparison we use exact Riemann solution, upwind [16] and central schemes of

Nessayahu and Tadmor [28]. The CFL condition in the ultra-relativistic case is very simple which is

Dt ¼ Dx=2. This CFL condition comes out automatically due to the structure of light cones, since every
signal speed is bounded by the velocity of light. In the following computations we have used the above

CFL condition for the upwind and central schemes, while 100 maximizations times were used for our

kinetic scheme.
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Problem 1. Shock tube problem I

The initial data are

ðn; u; pÞ ¼ ð5:0; 0:0; 10:0Þ if x < 0:5;
ð1:0; 0:0; 0:5Þ if xP 0:5:

�

The spatial domain is taken as ½0; 1� with 400 mesh elements and the final time is t ¼ 0:5. This problem

involves the formation of an intermediate state bounded by a shock wave propagating to the right and a

transonic rarefaction wave propagating to the left. The fluid in the intermediate state moves at a mildly

relativistic speed (v ¼ 0:58c) to the right. Flow particles accumulate in a dense shell behind the shock wave

compressing the fluid and heating it. The fluid is extremely relativistic from a thermodynamic point of view,

but only mildly relativistic dynamically. Figs. (3)1;2 and (4)1;2 show the particle density n, fluid velocity

v ¼ u=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
and pressure p. Figs. (3)3;4 and (4)3;4 show the same results with zooming in order to easily

compare the schemes.

Problem 2. Shock tube problem II

The initial data are

ðn; u; pÞ ¼ ð1:0; 1:0; 3:0Þ if x < 0:5;
ð1:0;�0:5; 2:0Þ if xP 0:5:

�

The spatial domain is taken as ½0; 1� with 400 mesh elements and the final time is t ¼ 0:5. The solution

consist of left shock, a contact and a right shock. Fig. 4 presents plots for the particle density, velocity v and
pressure.

Problem 3. Perturbed relativistic shock tube flow

This problem was studied by Yang et al. [38]. The initial conditions are specified as ðnL; uL; pLÞ ¼
ð1:0; 0:0; 1:0Þ for 06 x6 0:5 and ðnR; uR; pRÞ ¼ ðnR; 0:0; 0:1Þ for 0:56 x6 1:0. Here the right state is a per-

turbed density field of sinusoidal wave, nR ¼ 0:125� 0:0875 sinð50ðx� 0:5ÞÞ. We run this test for the 400

mesh points. The computed solutions are plotted at t ¼ 0:5. The results for particle density n, velocity
v ¼ u=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
and pressure p are shown in Fig. 5. Since the continuity equation in the Euler equations

decouples from the other two equations for the pressure and velocity, therefore we do not see the effect of

perturbation in the pressure and velocity.

Problem 4. Single shock solution of the Euler equations

In this example we test our kinetic scheme for a single shock problem. We supplied initial data to the
program for which we know that a single shock solution results from the Rankine–Hugoniot jump con-

ditions, see [24]. We select the initial data and the space–time range such that the shock exactly reaches the

right lower corner at the time axis. Fig. (6)1;2 represent the plots of the particle density in the time range

06 t6 1:271 and in the space range 06 x6L ¼ 2. The figures shows that both first- and second-order

kinetic schemes captures this shock in exactly the same way as predicted by the Rankine–Hugoniot jump

conditions. The Fig. (6)3 presents the particle density at the fixed time t ¼ 0:635 for the same initial data.

The Riemannian initial data with a jump at x ¼ L=2 ¼ 1 are chosen as

ðn; u; pÞ ¼ ð1:0; 0:0; 1:0Þ if x < 1:0;
ð2:725;�0:6495; 4:0Þ if xP 1:0;

�



Fig. 3. Comparison of the results from the problem 1 at time t ¼ 0:5.
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Fig. 4. Comparison of the results from the problem 2 at time t ¼ 0:5.
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Fig. 5. Perturbed relativistic shock tube flow at time t ¼ 0:5.
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Fig. 6. A single shock solution using kinetic scheme.
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where 400 mesh points are considered here. In this example we found that our kinetic scheme gives a sharp

shock resolution. This is a good test for the kinetic scheme, and its success indicates that the conservation

laws for mass, momentum and energy as well as the entropy inequality are satisfied, see [24].

Problem 5. Two interacting relativistic blast waves

The initial data are

ðn; u; pÞ ¼
ð1:0; 0:0; 100:0Þ if 0 < x < 0:1;
ð1:0; 0:0; 0:06Þ if 0:1 < x < 0:9;
ð1:0; 0:0; 10:0Þ if 0:9 < x < 1:0:

(

The reflective boundary conditions are applied at both x ¼ 0:0 and x ¼ 1:0. The results are given in Fig. 7

for the particle density n, velocity v and pressure p. The number of mesh points are 1000 and the output

time is t ¼ 0:75.

Problem 6. From free-flight to the Eulerian limit

We consider a density distribution at zero velocity and uniform temperature:

nð0; xÞ ¼ 1; 4:06 x6 6:0;
1:1; otherwise;

�
uð0; xÞ ¼ 0; T ð0; xÞ ¼ 1:

We are interested in the solution within the range x 2 ½0; 10� with 400 mesh points at time t ¼ 3:0 for

different maximizing entropy times sM . Fig. 8 depicts the density, velocity and pressure distributions at

t ¼ 3:0 from the first-order kinetic scheme. The diffusion like distributions result from pure free-flight with

only one maximization at the beginning. The distributions that show already the formation of moving

fronts are obtained when we choose sM ¼ 0:3, i.e. there are 10 maximizations within the time interval ½0; 3�.
When we decrease sM further, the fronts become steeper, and this is exhibited by the distributions that are
obtained for sM ¼ 0:03. This is almost the Eulerian limit. The physical content of the Eulerian limit is the

overwhelming importance of collisions against free-flight. A chosen sM > 0 thus determines which of both

mechanisms has more influence on a thermodynamic process. The exact Euler solution was obtained by

using second-order central scheme on very fine mesh.

Problem 7. Experimental order of convergence in one space dimension

Here we check the EOC of the first and second-order kinetic schemes. The initial data are

n ¼ sinð2pxÞ þ 2:0; u ¼ 0:0; p ¼ 1:0:



Fig. 8. Density, velocity and pressure distributions for 1, 10 and 100 maximizations.

Fig. 7. Two interacting relativistic blast waves at time t ¼ 0:75.
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The computational domain is 06 x6 1, and the final time for the numerical solution is t ¼ 1:0. In a real gas

there is a diffusion due to the difference in initial particle density and temperature at the initial contact

discontinuity. However, this phenomenon is not described by the Euler equations. In this example the gas is

initially at rest therefore the solution is stationary with same data. If h ¼ Dx is the cells width then L1-norm
is given by

kW ð�; tÞ � Whð�; tÞkL1ðRÞ ¼ cha; ð7:1Þ



Table 1

L1-error and EOC in the kinetic scheme

N First order Second order

L1-error EOC L1-error EOC

50 0.110296 0.012974

100 0.057260 0.9458 0.003643 1.8324

200 0.029149 0.9741 0.001010 1.8508

400 0.014694 0.9882 0.000272 1.8927

800 0.007369 0.9957 0.000071 1.9377

1600 0.003686 0.9994 0.000018 1.9798

3200 0.001842 1.0008 4.52E�06 1.9936

Fig. 9. Comparison of the results from the problem 6 at time t ¼ 0:5.
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where a is the order of the L1-error. Here W denotes the exact solution and Wh the numerical solution. The

L1-error is defined as kW ð�; tÞ � Whð�; tÞkL1 ¼ Dx
PN

i¼1 jW ðxi; tÞ � Whðxi; tÞj, where N is the number of mesh

points. Then (7.1) gives

EOC :¼ a ¼ ln
kW ð�; tÞ � Wh

2
ð�; tÞkL1

kW ð�; tÞ � Whð�; tÞkL1

 !,
ln

1

2

� �
:

Table 1 gives the L1-error and EOC for the first- and second-order kinetic schemes. The plots for numerical

solution and error difference in the exact and numerical solutions are given in Fig. 9.
8. Conclusions

This paper is an extension of our first-order kinetic scheme [24] to second order for the solution of ultra-

relativistic Euler equations. This method is based on the well-known fact that moments of the relativistic

Boltzmann equation of the kinetic theory of gases are the relativistic Euler equations when the distribution

function is a relativistic Maxwellian. Thus, every method for the solution of the Boltzmann equation can be

mapped to a method for the solution of the Euler equations provided the distribution function is Max-

wellian. This strategy has been used to develop the kinetic scheme, which is explicit and satisfy the con-

servation laws and entropy inequality. Further, it can be made TVD by using a suitable interpolation

strategy for evaluating the free-flight phase density. A new aspect of the present work for the relativistic
case is the use of the antidiffusive Chapmann–Enskog-type distribution in developing a second-order ac-

curate kinetic scheme. An important difference between the present kinetic scheme and other methods is the
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treatment of the boundary conditions. In kinetic schemes the boundary conditions are applied on the level

of distribution function which is very natural. We have numerically implemented the one-dimensional first

and second-order kinetic schemes. The CFL condition for the central and Godunov schemes is very simple
which is Dt ¼ Dx=2. This CFL condition comes out automatically due to the structure of light cones, since

every signal speed is bounded by the velocity of light. The programing codes for the kinetic schemes are

simple like Godunov and central schemes. It was found that kinetic schemes give a better resolution of the

contact discontinuity as compared to the Godunov and central schemes, especially in the second-order case.

The kinetic scheme was found to be computationally expensive and is five to six times slower than the other

schemes due to the inside loop for the q-integration in each computational cell. However, the kinetic

schemes have other advantages. They need no CFL condition as well as are truly multi-dimensional and

highly vectorizable due to their explicit nature.
Appendix A

In the following we explain the derivation of some equations used in Section 6 in order to get second-

order accuracy in the one- and two-dimensional kinetic schemes for the ultra-relativistic Euler equations. In

order to write the time derivatives of the fields n, u and p in term of the spatial derivatives, we use the Euler
equations (3.9). These Euler equations after expanding the time and spatial derivatives givesffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p on

ot
þ nuffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ou

ot
¼ �u

on
ox

� n
ou
ox

;

4u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p op
ot

þ 4p
ð1þ 2u2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ou

ot
¼ �ð1þ 4u2Þ op

ox
� 8pu

ou
ox

;

ð3þ 4u2Þ op
ot

þ 8pu
ou
ot

¼ �4u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p op
ox

� 4p
ð1þ 2u2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ou

ox
:

ðA:1Þ

These are three equations for three unknowns on=ot, ou=ot and op=ot, we get

ou
ot

¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

4pð3þ 2u2Þ
op
ox

��2u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

3þ 2u2
ou
ox

;

op
ot

¼ �2u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

3þ 2u2
op
ox

� 4p

ð3þ 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ou
ox

;

on
ot

¼ 3n

ð3þ 2u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p u
4p

op
ox

�
� ou

ox

�
� uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p on

ox
:

ðA:2Þ

Using Eqs. (3.10) we can write

oN 1

ot
¼ o

ot
ðnuÞ ¼ u

on
ot

þ n
ou
ot

;

oT 11

ot
¼ o

ot
ðpð1þ 4u2ÞÞ ¼ ð1þ 4u2Þ op

ot
þ 8pu

ou
ot

:

ðA:3Þ

Now using (A.2) in (A.3) we finally get after simplifications

oN 1

ot
¼ � 3n

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð3þ 2u2Þ

op
ox

� ð5nuþ 2nu3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð3þ 2u2Þ

ou
ox

� u2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p on
ox

;

oT 11

ot
¼ � 8uð1þ u2Þ3=2

3þ 2u2
op
ox

� 4pð1þ 8u2 þ 4u4Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ð3þ 2u2Þ

ou
ox

:

ðA:4Þ
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Next we want to calculate the second terms of order s2M appearing on the right-hand sides of (6.8). For this

purpose we use the definitions (6.5) and reduced equilibrium phase densities (5.2), we get

Z 1

�1

n2/ðx; nÞdn ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ðu2 � 1Þ
u2

þ n
u3

arcsinhðuÞ;
Z 1

�1

n3wðx; nÞdn ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u3
4u4
�

� 2u2 þ 3
�
þ 3p

u4
arcsinhð�uÞ;

ðA:5Þ

which on differentiating with respect to x gives

o

ox

Z 1

�1

n2/ðx; nÞdn ¼ ðu2 � 1Þ
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p�
þ 1

u3
arcsinhðuÞ

	
on
ox

þ n
u4 þ u2 þ 3

u3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

� 3

u4
arcsinhðuÞ

	
ou
ox

; ðA:6Þ
o

ox

Z 1

�1

n3wðx; nÞdn ¼ ð4u4 � 2u2 þ 3Þ
u3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p�
þ 3

u4
arcsinhð � uÞ
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þ p
8u6 þ 4u4 � 4u2 � 12

u4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

� 12

u5
arcsinhð � uÞ

	
ou
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: ðA:7Þ

By using the relations (A.4), (A.6) and (A.7), we obtain after simplification

gðn; u; pÞ ¼ oN 1

ot
ðtn; xÞ þ

o

ox

Z 1

�1

n2/dn

¼
 

� ð1þ u2Þ�1=2

u2
þ 1

u3
arcsinhðuÞ

!
on
ox

� 3nð1þ u2Þ�1=2

4pð3þ 2u2Þ
op
ox

þ 9n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u3ð3þ 2u2Þ

�
� 3n

u4
arcsinhðuÞ

�
ou
ox

; ðA:8Þ
hðu; pÞ ¼ oT 11

ot
ðtn; xÞ þ

o

ox

Z 1

�1

n3wdn ¼ 9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u4ð3þ 2u2Þ

�
þ 3 arcsinhð�uÞ

u5

�
u
op
ox

�
� 4p

ou
ox

�
: ðA:9Þ

Eqs. (A.8) and (A.9) are appearing in the order s2M terms of (6.8)1;2.
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